Exercices 4 à 8

Exercice 4

1. (n+1)/(n2+1)

U0=1

U1=1

U2=3/5

U3=2/5

U4= 5/17

U5=3/13

2. u0=1 et u(n+1)=2u(n)

U0= 1

U1= 2

U2= 4

U3= 8

U4= 16

U5= 32

3. U1=-2 et u(n+1)=2u(n)

U1= -2

U2= -3

U3= -5

U4= -9

U5= -17

4. U(n) = ‘racine’ (n2+1)

U1= 1,4142

U2= 2,2360

U3= 3,1622

U4= 4,1231

U5= 5,0990

U0= 1

5. U(n)= 2^n

U0= 1

U1= 2

U2= 4

U3= 8

U4= 16

U5= 32

Exercice 5: u(n)= -3n+5

U(n+1)= -3n+2

U(n)+1= -3n+6

U(n+2)= -3n-1

U(2n)= -6n+5

U(n2)= -3n2+5

U(2n+1)= -6n+2

Exercice 6: u(n)= 7-3n

Calculs:

U2= -2

U3= 1

Exercice 8

U1= 4

Démonstration

Exercice 7

Calculs

U1= -1

U2= 5

U3= -7

Démonstration

U(n+1) = 7- 3(n+1) = (7-3n)-3


U(n+1) = u(n)-3

U[(n+1)+1] = u(n+2) donc

U(n+2)= 3-2[3-2u(n)]


=> U(n+2) = 4u(n)-3