E((Xi−¯X)2)=(μi−¯μ)2+n−1nσ2
📃
\[\overline{\mu}=\frac{1}{n}\sum_{i=1}^{n}\mu_{i}\]
\(X_i\) oberoende
\(E(X_i)=\mu_i\)
\(\textrm{Var}(X_i)=\sigma^2\)
Bevis
\[E\left((X_{i}-\overline{X})^{2}\right)=\left(E(X_{i}-\overline{X})\right)^{2}+\textrm{Var}\,(X_{i}-\overline{X})\]
\(E(U^{2})=\left(E(U)\right)^{2}+\textrm{Var}\,U\)
\((\mu_{i}-\overline{\mu})^{2}\)
\(\textrm{Var}\,X_{i}+\textrm{Var}\,\overline{X}-2\textrm{Cov}(X_{i},\overline{X})\)
\(\sigma_i\)
\[\frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2}\]
eftersom \(X_i\) oberoende, så summan av ind. varianserna
\[=\frac{1}{n}\sigma^{2}\]
\[=-2\frac{1}{n}\sum_{j=1}^{n}\textrm{Cov}(X_{i},X_{j})\]
Cov är ju noll förutom när j=i
Cov(Xi,Xi)=Var(Xi)=\(\sigma^2\)
\[=\sigma_{i}+\frac{1}{n}\sigma^{2}-2\frac{1}{n}\sigma^{2}=\frac{n-1}{n}\sigma^{2}\]
Cov(a, b + c) = Cov(a,b) + Cov(a,c) #
Cov(X,aY) = a*Cov(X,Y) #