click to edit title
Finska pappret
Receiver point
Punkter x på scenens ytor
Vi beräknar radiance i \(\mathbf{x}\) genom #
Probe
Captures the radiance field at the probe location \(\mathbf{p}_i\)
but it is too expensive to capture all directions \(\omega\), so we approximate with SH like this:
\(L(\mathbf{p}_{i},\omega)=\color{DodgerBlue}{\sum_{j}\lambda_{ij}Y_{j}(\omega)}\)
\(\boldsymbol{\lambda}\) = the probe radiance vector
\(Y_j\) = jth SH basis function #
Radiance field
The radiance field defines the radiance (color/intensity of light rays) in every direction at every point in space
\(L(\mathbf{x},\omega)\)
Spherical Harmonics
Local transport operator \(\mathcal{P}_{x}\){\(\boldsymbol{\lambda}\)}\((\omega)\)
Transformerar # till interpolerad incident radiance i \(\mathbf{x}\) som en funktion av den kontinuerliga riktningen \(\omega\)
\(L(\mathbf{x},\omega)\approx\mathcal{P}_{x}\){\(\boldsymbol{\lambda}\)}\((\omega)\)
#
Precomputed transport
\(\mathcal{P}_{x}\){\(\boldsymbol{\lambda}\)}\((\omega)\) ger oss alltså en approximation av vårt radiance field \(L(\mathbf{x},\omega)\). Från detta kan vi få ut irradiance:
\(I(\mathbf{x})\approx\int\mathcal{P}_{x}\){\(\boldsymbol{\lambda}\)}\((\omega)\cos\,\theta\,d\omega=\sum_{ij}\color{DodgerBlue}{\lambda_{ij}}\alpha_{ij}\)
där \(\alpha_{ij}=\left\langle K_{ij}(\mathbf{x},\cdot),\cos\,\theta\right\rangle \)
Precomputation-algoritmen
- Voxelisera scenen (med floodfilled interiors)
- Generera kandidater \(\mathbf{p}_i\): 1 per voxel som angränsar till yta
- Ta bort de kandidater \(\mathbf{p}_i\) som har högst värde på \(\textrm{density}(\mathbf{p}_i)\) definierad som\[\textrm{density}(\mathbf{p}_{i})=\sum_{k}w_{k}(\mathbf{p}_{i};\rho_{\textrm{probes}})\] där \[w_{i}(\mathbf{x};\,r)=\color{gold}{w(}||\mathbf{x}-\mathbf{p}_{i}||_{2}/r\color{gold}{)}\]tills vi nått önskat antal # prober.
- Beräkna local transport coefficients \(\boldsymbol{\alpha_x}\) och \(\mathbf{B_x}\) för alla receivers
- Komprimera \(\boldsymbol{\alpha_x}\) och \(\mathbf{B_x}\) med Clustered Principal Component Analysis [Sloan et al. 2003]