Please enable JavaScript.
Coggle requires JavaScript to display documents.
Solving problems principles ((Modelling (Systematization first: most…
Solving problems principles
Metrology Support
Singling out sources of inaccuracy in metrological tests; for every source of inaccuracy there should be a test that is able to precisely identify if that source is critical. The tests that are now used by metrology to identify if device is "good" or "bad" but don't explain what exatly is "bad" should be reviewed and replaced with more descriptive tests (like left-to-right reproducibility tests on ferrule)
Team knowledge base
Background
Update a list of topics of interest and mark them as mandatory, required or desirable.
Mandatory topic
: Everyone in the team should be familiar with it. There must be provided a list of literature that covers that topic in minimal content.
Required topics
are those that are a must for the team, but not a must for each in the team. Every required topic should be covered by at least by two team members. The more we distribute the required topics the larger and deeper is our team knowledge base.
Desired topics
are those that are not widely used in MaxInspect but may be applied in future.
Specific algorithms we use
Documentation: All the specific algorithms that we develop should be structured and documented. We may create a requirement that the corresponding bugzilla bug must not be closed until the algorithm is not described in Wiki.
Research & experiments
Try to perform bias-variance error decompostion when possible
Improve research documentation and sharing culture
Modelling
Systematization first: most critical problems should be investigated first and there is no need to go much deeper (if it's time consuming) than the problems we have.
All modeling scripts should be publicly available, easy-to-parametrize and easy-to-use.
Implement automatic tests on modeled data to be able to test the algorithms on a wide set of inputs and check their limits.
One of the simplest models is pertubated real data, it can be used for experiments
Systematization
All algorithmic problems and their possible reasons should be listed and their criticalness estimated. It will help to find the gaps in our knowledge base and algorithms and plan corresponding research.
Main problems to solve
Autofunctions
Autofocus
On interferometers
On microscopes
Objects Detection & Verification for autoviewport
Fiber Detection
MT
Fibers detection
Fiber verification
Special connectors
Other
Surface Reconstruction
Observed problems
Fiber height jumps
#
#
Fiber heights device bias
Core dip repeatability
Singlefiber on QM
#
#
...
Underlying inaccuracies
Ghost steps
Surface splicing
...
Piezo/motor steps determination
Anomalies Detection
Scratch detection
Scratch 2D and 3D parameters calculation
False positive scratches
Defect detection
Lignt defects detection
3D defect detection
Cracks on the border are not detected
Bugs that systematically appear
Setting correct exposure for scratch detection
...