Please enable JavaScript.
Coggle requires JavaScript to display documents.
5th Grade (Number & Operations in Base Ten (Understand the place value…
5th Grade
Number & Operations in Base Ten
Understand the place value system.
Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.
Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
Read, write, and compare decimals to thousandths.
Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000).
Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols
Use place value understanding to round decimals to any place.
Perform operations with multi-digit whole numbers and with decimals to hundredths.
Fluently multiply multi-digit whole numbers using the standard algorithm.
Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors. Show work with pictures or models
Add, subtract, multiply, and divide decimals to hundredths; relate the strategy to a written method and explain the reasoning used.
Number & Operations—Fractions
Use equivalent fractions as a strategy to add and subtract fractions.
Add and subtract fractions with unlike denominators, including mixed fractions, by replacing given fractions with equivalent fractions to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12.
Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2.
Apply and extend previous understandings of multiplication and division.
Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4.
Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a × q ÷ b. For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context for this equation.
Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
Interpret multiplication as scaling (resizing), by:
Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number; explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a/b = (n × a)/(n × b) to the effect of multiplying a/b by 1.
Solve real world problems involving multiplication of fractions and mixed numbers.
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.1
Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.
Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally?
Operations & Algebraic Thinking
Write and interpret numerical expressions.
Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921
Analyze patterns and relationships
Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence.