Please enable JavaScript.
Coggle requires JavaScript to display documents.
R Libraries (【classification】 (【Tree models】 (randomForest (randomForest()…
R Libraries
【classification】
【Tree models】
xgboost
randomForest
randomForest()
importance()
【Support Vector Machines】
kernlab
ksvm()
e1071
svm()
tune.svm()
【Integrated】
caret
train()
[method]
【Tree-based models】
'treebag' : Bagged CART
'adaboost' : Adaboost Classification Trees
'AdaBag' : Bagged AdaBoost
'bartMachine' : Bayesian Adaptive Regression Trees
'ada' : Boosted Classification Trees
'LogitBoost' : Boosted Logistic Regression
'blackboost' : Boosted Tree
'bstTree' : Boosted Tree
'J48' : C4.5-like Trees
'C5.0' : C5.0
'rpart' : CART
'rpart1SE' : CART
'rpart2' : CART'
'rpartScore' : CART or Ordinal Responses
'chaid' : CHi-squared Automated Interaction Detection
'ctree' : Conditional Inference Tree
'ctree2' : Conditional Inference Tree
'C5.0ost' : Cost-Sensitive C5.0
'rpartCost' : Cost-Sensitive CART
'deepboost' : DeepBoost
'xgbTree' : eXtreme Gradient Boosting
'gbm_h2o' : Gradient Boosting Machines
'M5' : Model Tree
'rotationForest' : Rotation Forest
'rotationForestCp' : Rotation Forest
'C5.0Tree': Single C5.0 Tree
'gbm' : Stochastic Gradient Boosting
'nodeHarvest' : Tree-Based Ensmbles
'evtree' : Tree Models from Genetic Algorithms
predict()
tidyverse
【read data】
readr
readxl
haven
httr
rvest
xml2
jsonlite
DBI
【process data】
tibble
tidyr
dplyr
forcats
lubridate
hms
stringr
【viz, FP, modeling】
ggplot2
purrr
lazyeval
magrittr
modelr
broom
【regression】
glmnet
lm