Please enable JavaScript.
Coggle requires JavaScript to display documents.
Tool Recognition and the Primate's Dorsal Stream: How Humans are Unique
Tool Recognition and the Primate's Dorsal Stream: How Humans are Unique
Tool Recognition: Normal Cases
Chouinard, P. A., & Goodale, M. A. (2012). FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task. Neuroimage, 59(3), 2941-2951.
Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478-484.
Lewis, J. W. (2006). Cortical networks related to human use of tools. The Neuroscientist, 12(3), 211-231.
Valyear, K. F., Cavina-Pratesi, C., Stiglick, A. J., & Culham, J. C. (2007). Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?. Neuroimage, 36, T94-T108.
Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Frontiers in psychology, 5.
Object Recognition: Basics
Riesenhuber, M., & Poggio, T. (2002). Neural mechanisms of object recognition. Current opinion in neurobiology, 12(2), 162-168.
James, T. W., Humphrey, G. K., Gati, J. S., Menon, R. S., & Goodale, M. A. (2002). Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron, 35(4), 793-801.
Tool Recognition: Pathological Cases
Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645-1655.
Object Recognition
Primates
Janssen, P., Srivastava, S., Ombelet, S., & Orban, G. A. (2008). Coding of shape and position in macaque lateral intraparietal area. Journal of Neuroscience, 28(26), 6679-6690.
Sereno, A. B., & Maunsell, J. H. (1998). Shape selectivity in primate lateral intraparietal cortex. Nature, 395(6701), 500.
humans
Jeong, S. K., & Xu, Y. (2016). Behaviorally relevant abstract object identity representation in the human parietal cortex. Journal of Neuroscience, 36(5), 1607-1619.
Konen, C. S., & Kastner, S. (2008). Two hierarchically organized neural systems for object information in human visual cortex. Nature neuroscience, 11(2), 224.
Xu, Y., & Jeong, S. K. (2015). The contribution of human superior intraparietal sulcus to visual short-term memory and perception. Mechanisms of Sensory Working Memory: Attention and Perfomance XXV, 33.
cross-species comparison
Kastner, S., Pinsk, M.A., Arcaro, M., Li, X., Konen, C.S., 2009. Investigations of visual object representations along the dorsal and ventral pathways in macaque monkeys using fMRI. Soc. Neurosci. Abstr. 35: Program Number 802. 4."
Human Dorsal and Ventral Vision: Basics
Zachariou, V., Klatzky, R., & Behrmann, M. (2014). Ventral and dorsal visual stream contributions to the perception of object shape and object location. Journal of Cognitive Neuroscience, 26(1), 189-209.
Chinellato, E., & del Pobil, A. P. (2016). The Neuroscience of Action and Perception. In The Visual Neuroscience of Robotic Grasping (pp. 7-38). Springer International Publishing.
Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821-824.
Dorsal System: Interspecies comparison
Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., ... & Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44(13), 2647-2667.
Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of anatomy, 207(1), 3-17.