Thermodynamics :
first law
open system
closed system
second law
open system
closed system
Energy Equation,
DEcv/Dt=QdotWdot+Sum_e(mdot
(h+ke+pe))Sum_i(mdot(h+ke+pe)
transient system
steady system
multiple inlet/ exit
Single Inlet/Single Exit
q+h_i+ke_i+pe_i=w+h_e+ke_e+pe_e
Nozzle/Diffuser Throttling Devices/Valves Turbines/Expanders
Compressors/Fans Pumps Heater/Cooler/Boiler
Pipes/Ducts
Energy Equation
/Delta E = Q W
heat
conduction
convection
radiation
work
Boundary Work
When boundary is moving (volume changes through the
process), W=\int P dV
Isobaric, constant pressure
P=C
Isothermal (constant temperature) and ideal gas,
P=mRT/V
Linear,
P=mV+b
Polytropic,
P=C/V^n
other
electrical
shaft
chemical
TOTAL ENERGY/delta e
potential energy
kinetic energy
internal energy
If ideal Gas
\Delta u = C_v0*\Delta T
If multi phase (water, refrigerant, or ammonia)
If Solid or Liquid (no phase change) \Delta u=C*\Delta T
use table
Compressed Liquid
Saturated Liquid
Saturated Mixture
P=Psat
T=Tsat
u=uf+x*ufg
(ditto for v, s, & h)
P>Psat
T<Tsat
u<uf
v<vf
s<sf
If no compressed liquid table:
u~uf(at T)
(ditto for v, s, & h)
P=Psat
T=Tsat
u=uf
(ditto for v, s, & h)
Saturated Vapor
P=Psat
T=Tsat
u=ug
(ditto for v, s, & h)
Superheated Vapor
P<Psat
T>Tsat
u>ug
v>vg
s>sg
Entropy Equation,
S2S1 = \int delta Q/T + Sgen
Entropy Change, s2s1
Type of process
Cycle, s2s1=0
Process, s2s1~=0
Substance Types
when phase changes,
use tables
ideal gas,
(s2s1)=Cp0ln(T2/T1)Rln(P2/P1)
solids and liquids (no phase change),
s2s1=C*ln(T2/T1)
Heat transfer, \int delta Q/T
if adiabatic,
\int delta Q/T=0
if isothermal,
\int delta Q/T=Q/Tsystem
Entropy Generation, Sgen
if reversible,
Sgen=0
if irreversible,
Sgen>0
Also if irreversible....
(S2S1)=Q/Tsurr + Sgen (universe)
Entropy Equation
Sum(mdotese)Sum(mdotisi)=\int delta
Qdot/T +Sgen
Steady Systems
Multiple Inlets/Exits
Single Inlet/Single Exit,
sesi=\int q/T + sgen
Heat Transfer,
\int q/T
Can only calculate if you know how T changes
through the device or process.
Isothermal,
\int q/T = q/T
Adiabatic,
\int q/T=0
Entropy change,
calculate the same way as closed systems
transient system
cycles
Heat Engine
Thermal Efficiencies
Actual Efficiency,
\eta_he=W/Qh
Carnot (ideal) Efficiency,
\eta_he=1TL/Th
Heat Pump
Coefficient of Performance
Actual COP,
beta_hp=Qh/W
Carnot (ideal) COP,
beta_hp=Th/(ThTL)
Refrigerator
Coefficient of Performance
Actual COP,
beta_ref=QL/W
Carnot (ideal) COP,
beta_ref=TL/(THTL)
Conservation of Mass
Closed Systems
(Control Mass Approach, Constant Mass)
m1=m2
\Delta m = 0
Open Systems
(Control Volume Approach, Constant Volume)
Steady
One inlet/ one exit
mdoti=mdote
M
Multiple inlets and exits
Sum(mi)=Sum(me)
Transient