ST2334 Probability and Statistics
Descriptive
Summarizing/Describing data
Inferential
-Drawing conclusions on population based on sample
Variables
Categorical
Numerical
-Discrete
-Continuous
Sampling
Probability
Non-probability
Simple Random
Systematic
Cluster
Clusters tend to be similar to one another
Stratified
Units in a strata share common traits
Quota
Convenience
Judgement
Sample Variance Formula
w/o computational formula
s2=1n−1Σni=1(xi−ˉx)2
(Computational Ver.)
1n−1[Σni=1x2i−(Σni=1xi)2n]
StdDev = s
Skew
Left = Mean < Median
Right = Mean > Median
Coefficient of Variation
100%*\(\frac{stdDev}{|mean|}\)
5-number summary:
Min,Q1,Median,Q3,Max
Interquartile Range
IQR=Q3-Q1
Probability
P(A ∪ B) = P(A)+P(B)
Counting Methods
- Generalized Basic Principle of Counting
- Factorial (n!) [Arranging n obj]
- Permutations ((n!)/(n-r)!) [Arranging r out of n]
- Combinations ((n!)/[r!(n-r)!])
Conditional Prob.
P(B|A) = \(\frac{P(A∩B)}{P(A)}\)
P(A∩B) = P(A) P(B|A)
Inverse Prob.
P(A|B) = \(\frac{P(A∩B)}{P(B)}\)
Independent Prob iff
P(A∩B) = P(A) P(B)
Mutual Exclusive
P(A∩B) = 0
Bayes' Theorem
P(A|B) = \(\frac{P(A) * P(B|A)}{P(B)}\),
where P(B) [the denominator]
= Total Prob. of B
= \(\Sigma^n_{i=1}P(A_i) P(B|A_i)\)
Random Variables
Discrete
CDF
\(F(x) = P(X ≤ x) = \Sigma_{k=1}^{x} P(X=k)\)
Expectation EV = Mean value of random variable
\(E(X)=\Sigma_{x_i}x_iP(X=x_i)\)
Properties:
E (a+bX) = a + bE(X)
E(X+Y) = E(X)+ E(Y)
E( f(x) ) = \(\Sigma_{x_i}f(x) P(X=x_i)\)
Variance & stdDev
var X
= \(E([X-E(X)]^2)\)
= \(\Sigma_{x_i} (x_i - u)^2 P(X=x_i)\)
= \(E(X^2) - [E(X)]^2\)
Variance Property: var (a+bX) = b^2 var X
StdDev of random variable X
= \(\sigma = SD(X) = \sqrt{var X}\)
(No. of successess in n trials)
Binomial Random Var.
X~B(NoOfEvents[n], ProbOfSuccess[p])
P(X=x)
= \(\binom{n}{x}p^x (1-p)^{n-x}\)
, for x=1,2,..,n
\(E(X) = np\)
\(var X = np(1-p)\)
#Large n, Small p
Let \(X_n\)~B(\(n,\frac{\lambda}{n}\)),
Y~Poisson(\(\lambda\)),
\(lim_{n->∞} P(X_n=k) = P(Y=k)\)
May be approxed by Poisson #
Let X be discrete,
\(
X\approx N(np,np(1-p))
\)
\(
P(X≤x)\approx \Phi (\frac{x-np}{\sqrt{np(1-p)}})
\)
May be approxed by Normal #
*Continuity Correction when approx. norm.
Represent continuous ranVar k with
k-0.5 to k+0.5
-0.5 from the discrete ranVar., keep arrow sign
(No. of B.Trials needed before success)
Geometric Random Variables
\(P(X=k) = (1-p)^{k-1}p\), for k=1,2,3,...
\(E(X) = \frac{1}{p}\)
\(var X = \frac{1-p}{p^2}\)
CDF:
\(\Sigma_{k=1}^{x} P(X=k)\)
=\(\Sigma_{k=1}^{x} (1-p)^{k-1} p\)
=\(1-(1-p)^x\)
(No. of events in fixed period)
Poisson Random Variables
\(\lambda\) is the "rate" and should be scaled accordingly
\(P(X=k)=\frac{e^{-\lambda}\lambda^{k}}{k!}\)
\(E(X) = \lambda\)
\(var X = \lambda\)
(Bernoulli - Independent, Identical Trials with 2 outcomes)
Bernoulli Random Variable
P(X=x):
p, when x=1,
1-p, when x=0
Derived:
E(X) = p,
var X = p(1-p)
Continuous
P(X=x) = 0, for any x
P(a<X≤b) = \(\int_{a}^{b}f_x(x) dx\)
\(\int_{-∞}^{∞} f(x) dx = 1\)
CDF
\(F(x) = \int_{-∞}^{x} f(t) dt\)
P(a<X≤b) = F(b) - F(a)
Expectation
\(\mu = E(g(X)) = \int_{-∞}^{∞}g(x) . f(x)dx\)
Variance
\(var(X) = E[(X - E(X))^2] = \int_{-∞}^{∞} (x-\mu)^2 f(x) dx \)
OR
\(var(X) = E(X^2) - [E(X)]^2 = \int_{-∞}^{∞} x^2 f(x) dx - \mu^2\)
Normal/Gauss Distri. (X ~ N(\(\mu, \sigma^2\)))
\(
f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2 / (2\sigma^2)}
\)
\(
E(X) = \mu, var(X) = \sigma^2
\)
Uniform Distri.
(X~ U(a,b))
\(
f_x(x) =
\begin{cases}
1/(b-a) , a < x < b \\
0, otherwise
\end{cases}
\)
\(
E(X) = (a+b)/2
\)
\(
var(X) = \frac{(b-a)^2}{12}
\)
CDF
\(
F_x(x) =
\begin{cases}
\frac{1}{(b-a)} , a < x < b \\
0, otherwise \\
1, if x ≤ b \\
\end{cases}
\)
Exponential Distri.
(X~ Exp(\(\lambda\)))
\(
f_x(x) =
\begin{cases}
\lambda e^{-\lambda x}, if x≥ 0 \\
0, if x<0
\end{cases}
\)
\(
E(X) = \frac{1}{\lambda}
\)
\(
var(X) = \frac{1}{\lambda^2}
\)
CDF
\(
F_x(x) =
\begin{cases}
1- e^{-\lambda x}, x>0 \\
0, x≤0 \\
\end{cases}
\)
Memoryless Property
P(X > s+t | X > s)
= P(X>t), for s,t>0
Standard Normal Distri.
(Z~N(0,1))
Same, but with \(\mu = 0\) and \(\sigma = 1\)
For Y~N(\(\mu, \sigma^2)\)
\(
P(a < Y ≤ b)=Φ(\frac{b-\mu}{\sigma}) - Φ(\frac{a-\mu}{\sigma})
\)
Properties:
P(Z≥0) = P(Z≤0) = 0.5
P(Z≤x) = 1-P(Z>x)
P(Z≤ -x) = P(Z≥x)
-Z~N(0,1)
If Y ~ N \((\mu, \sigma^2), then X = \frac{Y-\mu}{\sigma}\)~N(0,1)
If X~N(0,1), then Y = aX+b ~ N(b,\(a^2\))
Chebyshev's Inequality
Used when distri. unknown to estimate prob., given mean and variance
If random variable X has mean and SD, prob. of getting val. which deviates from \(\mu\) by at least \(k\sigma\) is at most \(\frac{1}{k^2}\)
Formula (sub in k accordingly):
\(
P(|X-\mu| ≥ k\sigma) ≤ \frac{1}{k^2}
\)
Quantile (Z-score table)
The qth quantile of the random variable X is the number \(z_q\) that satisfies
P(X ≤ \(z_q\)) = q.
Sampling and Sampling Distributions
Sampling Distri. of \(\bar{X}\)
\(
E(\bar{X)} = \mu,
var(\bar{X}) = \frac{{\sigma^2}}{n}
\)
Law of Large Numbers
\(P(|bar{X} - \mu| > \epsilon)\) -> 0 as n -> inf
Central Limit Theorem
For large n, sum and mean of random samples follow normal distribution closely
\(
\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}
\)~ N(0, 1)
t-distribution with t(ail)-table
If \(\sigma\) isn't known, it can be estimated by the sample StdDev
\(
T = \frac{\bar{X} - \mu}{S / \sqrt{n}}
\)
is a random variable having the t-distribution with parameter v=n-1, where v is the degree of freedom. When n>=30, can replace by N(0,1)
(Note: Chi2 is only applicable for normal populations)
\(\chi^2\) distri. with \(\chi^2 \)table
If \(X_i\) is normal,
\(
\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\Sigma_{i=1}^{n}(X_i - \bar{X})^2}{\sigma^2}
\)
is a random variable having the \(\chi^2\) distribution with param. v=n-1