ST2334 Probability and Statistics

Descriptive
Summarizing/Describing data

Inferential
-Drawing conclusions on population based on sample

Variables

Categorical

Numerical
-Discrete
-Continuous

Sampling

Probability

Non-probability

Simple Random

Systematic

Cluster
Clusters tend to be similar to one another

Stratified
Units in a strata share common traits

Quota

Convenience

Judgement

Sample Variance Formula
w/o computational formula

s2=1n1Σni=1(xiˉx)2
(Computational Ver.)
1n1[Σni=1x2i(Σni=1xi)2n]
StdDev = s

Skew
Left = Mean < Median
Right = Mean > Median

Coefficient of Variation
100%*\(\frac{stdDev}{|mean|}\)

5-number summary:
Min,Q1,Median,Q3,Max

Interquartile Range
IQR=Q3-Q1

Probability
P(A ∪ B) = P(A)+P(B)

Counting Methods

  • Generalized Basic Principle of Counting
  • Factorial (n!) [Arranging n obj]
  • Permutations ((n!)/(n-r)!) [Arranging r out of n]
  • Combinations ((n!)/[r!(n-r)!])

Conditional Prob.
P(B|A) = \(\frac{P(A∩B)}{P(A)}\)
P(A∩B) = P(A) P(B|A)
Inverse Prob.
P(A|B) = \(\frac{P(A∩B)}{P(B)}\)

Independent Prob iff
P(A∩B) = P(A) P(B)
Mutual Exclusive
P(A∩B) = 0

Bayes' Theorem
P(A|B) = \(\frac{P(A) * P(B|A)}{P(B)}\),
where P(B) [the denominator]
= Total Prob. of B
= \(\Sigma^n_{i=1}P(A_i) P(B|A_i)\)

Random Variables

Discrete
CDF
\(F(x) = P(X ≤ x) = \Sigma_{k=1}^{x} P(X=k)\)


Expectation EV = Mean value of random variable
\(E(X)=\Sigma_{x_i}x_iP(X=x_i)\)
Properties:
E (a+bX) = a + bE(X)
E(X+Y) = E(X)+ E(Y)
E( f(x) ) = \(\Sigma_{x_i}f(x) P(X=x_i)\)


Variance & stdDev
var X
= \(E([X-E(X)]^2)\)
= \(\Sigma_{x_i} (x_i - u)^2 P(X=x_i)\)
= \(E(X^2) - [E(X)]^2\)


Variance Property: var (a+bX) = b^2 var X


StdDev of random variable X
= \(\sigma = SD(X) = \sqrt{var X}\)


(No. of successess in n trials)
Binomial Random Var.
X~B(NoOfEvents[n], ProbOfSuccess[p])
P(X=x)
= \(\binom{n}{x}p^x (1-p)^{n-x}\)
, for x=1,2,..,n
\(E(X) = np\)
\(var X = np(1-p)\)


#Large n, Small p
Let \(X_n\)~B(\(n,\frac{\lambda}{n}\)),
Y~Poisson(\(\lambda\)),
\(lim_{n->∞} P(X_n=k) = P(Y=k)\)
May be approxed by Poisson
#


Let X be discrete,
\( X\approx N(np,np(1-p)) \)
\( P(X≤x)\approx \Phi (\frac{x-np}{\sqrt{np(1-p)}}) \)
May be approxed by Normal #
*Continuity Correction when approx. norm.

Represent continuous ranVar k with
k-0.5 to k+0.5
-0.5 from the discrete ranVar., keep arrow sign

(No. of B.Trials needed before success)
Geometric Random Variables
\(P(X=k) = (1-p)^{k-1}p\), for k=1,2,3,...
\(E(X) = \frac{1}{p}\)
\(var X = \frac{1-p}{p^2}\)


CDF:
\(\Sigma_{k=1}^{x} P(X=k)\)
=\(\Sigma_{k=1}^{x} (1-p)^{k-1} p\)
=\(1-(1-p)^x\)

(No. of events in fixed period)
Poisson Random Variables
\(\lambda\) is the "rate" and should be scaled accordingly
\(P(X=k)=\frac{e^{-\lambda}\lambda^{k}}{k!}\)
\(E(X) = \lambda\)
\(var X = \lambda\)

(Bernoulli - Independent, Identical Trials with 2 outcomes)
Bernoulli Random Variable
P(X=x):
p, when x=1,
1-p, when x=0
Derived:
E(X) = p,
var X = p(1-p)

Continuous
P(X=x) = 0, for any x


P(a<X≤b) = \(\int_{a}^{b}f_x(x) dx\)
\(\int_{-∞}^{∞} f(x) dx = 1\)


CDF
\(F(x) = \int_{-∞}^{x} f(t) dt\)
P(a<X≤b) = F(b) - F(a)


Expectation
\(\mu = E(g(X)) = \int_{-∞}^{∞}g(x) . f(x)dx\)


Variance
\(var(X) = E[(X - E(X))^2] = \int_{-∞}^{∞} (x-\mu)^2 f(x) dx \)
OR
\(var(X) = E(X^2) - [E(X)]^2 = \int_{-∞}^{∞} x^2 f(x) dx - \mu^2\)

Normal/Gauss Distri. (X ~ N(\(\mu, \sigma^2\)))
\( f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2 / (2\sigma^2)} \)
\( E(X) = \mu, var(X) = \sigma^2 \)

Uniform Distri.
(X~ U(a,b))
\( f_x(x) = \begin{cases} 1/(b-a) , a < x < b \\ 0, otherwise \end{cases} \)
\( E(X) = (a+b)/2 \)
\( var(X) = \frac{(b-a)^2}{12} \)



CDF
\( F_x(x) = \begin{cases} \frac{1}{(b-a)} , a < x < b \\ 0, otherwise \\ 1, if x ≤ b \\ \end{cases} \)

Exponential Distri.
(X~ Exp(\(\lambda\)))
\( f_x(x) = \begin{cases} \lambda e^{-\lambda x}, if x≥ 0 \\ 0, if x<0 \end{cases} \)
\( E(X) = \frac{1}{\lambda} \)
\( var(X) = \frac{1}{\lambda^2} \)



CDF
\( F_x(x) = \begin{cases} 1- e^{-\lambda x}, x>0 \\ 0, x≤0 \\ \end{cases} \)


Memoryless Property
P(X > s+t | X > s)
= P(X>t), for s,t>0

Standard Normal Distri.
(Z~N(0,1))
Same, but with \(\mu = 0\) and \(\sigma = 1\)


For Y~N(\(\mu, \sigma^2)\)
\( P(a < Y ≤ b)=Φ(\frac{b-\mu}{\sigma}) - Φ(\frac{a-\mu}{\sigma}) \)


Properties:
P(Z≥0) = P(Z≤0) = 0.5
P(Z≤x) = 1-P(Z>x)
P(Z≤ -x) = P(Z≥x)
-Z~N(0,1)


If Y ~ N \((\mu, \sigma^2), then X = \frac{Y-\mu}{\sigma}\)~N(0,1)
If X~N(0,1), then Y = aX+b ~ N(b,\(a^2\))

Chebyshev's Inequality
Used when distri. unknown to estimate prob., given mean and variance


If random variable X has mean and SD, prob. of getting val. which deviates from \(\mu\) by at least \(k\sigma\) is at most \(\frac{1}{k^2}\)


Formula (sub in k accordingly):
\( P(|X-\mu| ≥ k\sigma) ≤ \frac{1}{k^2} \)

Quantile (Z-score table)
The qth quantile of the random variable X is the number \(z_q\) that satisfies
P(X ≤ \(z_q\)) = q.

Sampling and Sampling Distributions
Sampling Distri. of \(\bar{X}\)
\( E(\bar{X)} = \mu, var(\bar{X}) = \frac{{\sigma^2}}{n} \)
Law of Large Numbers
\(P(|bar{X} - \mu| > \epsilon)\) -> 0 as n -> inf
Central Limit Theorem
For large n, sum and mean of random samples follow normal distribution closely
\( \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \)~ N(0, 1)

t-distribution with t(ail)-table
If \(\sigma\) isn't known, it can be estimated by the sample StdDev
\( T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \)
is a random variable having the t-distribution with parameter v=n-1, where v is the degree of freedom. When n>=30, can replace by N(0,1)

(Note: Chi2 is only applicable for normal populations)
\(\chi^2\) distri. with \(\chi^2 \)table
If \(X_i\) is normal,
\( \chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\Sigma_{i=1}^{n}(X_i - \bar{X})^2}{\sigma^2} \)
is a random variable having the \(\chi^2\) distribution with param. v=n-1