Please enable JavaScript.
Coggle requires JavaScript to display documents.
คลื่นเเม่เหล็กไฟฟ้า :thunder_cloud_and_rain: (คลื่นเเม่เหล็กไฟฟ้า :star:…
คลื่นเเม่เหล็กไฟฟ้า :thunder_cloud_and_rain:
คลื่นเเม่เหล็กไฟฟ้า :star:
เกิดจาก
การรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า
ลักษณะ
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศได้
สมบัติ
ไม่ต้องใช้ตัวกลางในการเคลื่อนที่
อัตราเร็วของคลื่นแม่เหล็กไฟฟ้าทุกชนิดในสุญญากาศเท่ากับ 3x10^8 m/s ซึ่งเท่ากับ อัตราเร็วของแสง
เป็นคลื่นตามขวาง
ถ่ายเทพลังงานจากที่หนึ่งไปอีกที่หนึ่ง
ถูกปล่อยออกมาและถูกดูดกลืนได้โดยสสาร
ไม่มีประจุไฟฟ้า
คลื่นสามารถแทรกสอด สะท้อน หักเห และเลี้ยวเบนได้
สเปคตรัม
สเปคตรัมของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้า
ที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น
คลื่นวิทยุ
ลักษณะ
เป็นคลื่นแม่เหล็กไฟฟ้าความถี่สูง ซึ่งมีคุณสมบัติกระจายไปได้เป็นระยะทางไกล ด้วยความเร็วเท่ากับแสงคือ 300 ล้านเมตรต่อวินาที เครื่องส่งวิทยุจะทำหน้าที่สร้างคลื่นแม่เหล็กไฟฟ้าความถี่สูงหรือคลื่นวิทยุ (RF) ผสมกับคลื่นเสียง (Audio Frequency -AF) แล้วส่งกระจายออกไป ลำพังคลื่นเสียงซึ่งมีความถี่ต่ำไม่สามารถส่งไปไกลๆ ได้ ต้องอาศัยคลื่นวิทยุเป็นพาหะจึงเรียกคลื่นวิทยุว่า คลื่นพาหะ (Carier Wave) เครื่องรับวิทยุ จะทำหน้าที่รับคลื่นวิทยุและแยกคลื่นเสียงออกจากคลื่นวิทยุให้รับฟังเป็นเสียงปกติได้
ความถี่ของคลื่น
ความถี่ของคลื่น หมายถึง จำนวนรอบของการเปลี่ยนแปลงของคลื่น ในเวลา 1 นาที คลื่นเสียงมีความถี่ช่วงที่หูของคนรับฟังได้ คือ ตั้งแต่ 20 เฮิร์ตถึง 20 กิโลเฮิรตรซ์ (1 KHz =1,000 Hz) ส่วนคลื่นวิทยุเป็นคลื่นแม่เหล็กไฟฟ้าความถี่สูง อาจมีตั้งแต่ 3 KHz ไปจนถึง 300 GHz
( 1 GHz = พันล้าน Hz) คลื่นวิทยุแต่ละช่วงความถี่จะถูกกำหนดให้ใช้งานด้านต่างๆ ตามความเหมาะสม
1.ระบบเอเอ็ม (AM)
หมายถึงระบบการผสมคลื่นที่เมื่อผสมกันแล้วทำให้ความสูงของคลื่นวิทยุเปลี่ยนแปลงไปตามคลื่นเสียง จึงเรียกว่าการผสมทางความสูงของคลื่น (Amplitude Modulation) หรือ AM วิทยุ AM ให้คุณภาพของเสียงไม่ดีนัก เพราะเกิดการรบกวน ได้ง่าย เช่น ถูกรบกวนจากสถานีข้างเคียง เครื่องใช้ไฟฟ้า และที่สำคัญคือการรบกวนจากธรรมชาติ ได้แก่ เวลาฝนตก ฟ้าแลบ ฟ้าผ่า สภาพอากาศที่แปรปรวนมากๆ
2.ระบบ เอฟเอ็ม (FM)
เป็นการผสมคลื่นทางความถี่ (Frequency Modulation) คือคลื่นวิทยุที่ผสมกับคลื่นเสียงแล้ว จะมีความถี่ไม่สม่ำเสมอ เปลี่ยนแปลงไปตามคลื่นเสียง แต่ความสูงของคลื่นยังคงเดิม วิทยุ FM ส่งด้วยความถี่ 88 -108 MHz ในประเทศไทยมีจำนวนกว่า 100 สถานี กระจายอยู่ตามจังหวัดต่างๆ ทั่วประเทศ ให้คุณภาพเสียงดีเยี่ยม ไม่เกิดสัญญาณรบกวนจากสภาพอากาศแปรปรวน แต่ส่งได้ในระยะประมาณไม่เกินประมาณ 150 กิโลเมตร ปัจจุบันนิยมส่งในแบบ สเตอริโอ
ประโยชน์
ประโยชน์ของคลื่นวิทยุ
การสื่อสาร ถือว่าเป็นสิ่งสำคัญมากสำหรับมนุษย์เรา เรามีการติดต่อสื่อสารกันในหลายลักษณะนอกเหนือจากการพูดคุยกัน การใช้วิทยุ โทรทัศน์ หรือการใช้โทรศัพท์มือถือเป็นปัจจัยสำคัญสำหรับมนุษย์ที่จะรับทราบความเป็นไปต่างๆ ในโลกยุคโลกาภิวัตน์ ซึ่งอุปกรณ์หรือเครื่องใช้เหล่านี้จะทำงานได้ต้องอาศัยคลื่นแม่เหล็กไฟฟ้าที่เรียกว่า คลื่นวิทยุ นอกจากนี้เรายังใช้คลื่นวิทยุในด้านต่างๆ เช่น ทางการทหาร การติดต่อสื่อสารระหว่างประเทศ
คลื่นไมโครเวฟ
ลักษณะ
คลื่นไมโครเวฟ (Microwave) เป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Wave) ความถี่สูงชนิดหนึ่งที่สายตาไม่สามารถมองเห็นได้ แต่สามารถวัดได้โดยใช้เครื่องมือเฉพาะเท่านั้น และเป็นคลื่นแม่เหล็กไฟฟ้าเช่นเดียวกันคลื่นแสงอัลตราไวโอเลต (Ultraviolet) คลื่นรังสีเอ๊กซ์ และคลื่นรังสีแกมมา เป็นต้น แต่มีความถี่คลื่นน้อยกว่า
คลื่นไมโครเวฟมีความยาวคลื่นในช่วง 1 mm ถึง 1 m มีความถี่ของช่วงคลื่นในช่วง 300 MHz ถึง 300 GHz
คุณสมบัติ
การสะท้อนกลับ (Reflection)
คลื่นไมโครเวฟเมื่อวิ่งกระทบกับวัสดุที่เป็นโลหะหรือส่วนที่มีองค์ประกอบของโลหะ คลื่นจะไม่สามารถวิ่งทะลุผ่านโลหะได้ และจะสะท้อนกลับทั้งหมด ดังนั้น อาหารที่ถูกหุ้มด้วยภาชนะดังกล่าวจะไม่เกิดการสุก
การส่งผ่าน (Tranmission)
คลื่นไมโครเวฟเมื่อวิ่งกระทบกับวัสดุที่ไม่ใช่โลหะ ได้แก่ แก้ว พลาสติก กระดาษ เซรามิก และไม้ เป็นต้น คลื่นจะสามารถทะลุผ่านได้ ดั้งนั้น วัสดุเหล่านี้จึงนิยมใช้เป็นภาชนะสำหรับรองหรือห่อหุ้มอาหารเข้าตู้ไมโครเวฟ
การดูดซับ (Adsorption)
คลื่นไมโครเวฟเมื่อวิ่งกระทบกับวัสดุที่มีน้ำหรือความชื้นภายใน คลื่นจะเกิดบางส่วนจะถูกดูดซับเอาไว้ ทำให้โมเลกุลของน้ำดูดซับพลังงานคลื่น และเปลี่ยนเป็นพลังงานความร้อนเอาไว้จนเกิดความร้อนตามมา รวมถึงการเคลื่อนที่ของโมเลกุลน้ำ ซึ่งทำให้เกิดความร้อนเช่นกัน ทั้งนี้ คลื่นไมโครเวฟหลังถูกดูดซับจะสลายตัวทันที ไม่มีการตกค้างในอาหาร
ประโยชน์
ใช้ในอุปกรณ์หรือระบบการสื่อสารผ่านดาวเทียม
ใช้ในระบบตรวจจับวัตถุทางอากาศ การนำร่องทางการบิน การเดินเรือ และยุทโธปกณ์เคลื่อนที่เรดาร์
ใช้ในทางการแพทย์ สำหรับการฆ่าเชื้อ หรือการรักษาโดยการใช้ความร้อน โดยความมีช่วงความยาวคลื่นที่ยาวกว่าคลื่นไมโครเวฟที่ใช้ปรุงอาหารหรือมีความถี่คลื่นน้อยกว่านั่นเอง เพราะการรักษาอาการป่วยของมนุษย์จะต้องใช้ความร้อนในขนาดที่ร่างกายทนได้ ห้ามการใช้ความร้อนสูง เช่น การรักษาอาการปวดเมื่อยของกล้ามเนื้อหรือข้อ โดยใช้คลื่นไมโครเวฟความถี่ต่ำที่ให้ความร้อนเพียงอุ่นๆ ส่วนการรักษา และทำลายเซลล์มะเร็งในร่างกาย แพทย์จะใช้คลื่นไมโครเวฟที่มีความถี่สูงขึ้นมาเล็กน้อย
ใช้เป็นแหล่งกระตุ้นให้เกิดความร้อนภายในอาหารหรือใช้ประกอบอาหารให้สุก หรือที่นิยมเรียกว่า เตาไมโครเวฟ รวมถึง ใช้เป็นแหล่งให้ความร้อนในกระบวนการผลิตทางอุตสาหกรรม โดยใช้คลื่นความถี่ในช่วง 915 – 2,450 MHz
คลื่นโทรทัศน์
ลักษณะ
คลื่นโทรทัศน์มีความถี่ประมาณ 10^8 เฮิรตซ์ คลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงขนาดนี้จะไม่สะท้อนที่ชั้นไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก
การส่งคลื่นโทรทัศน์ระยะไกล
การส่งคลื่นโทรทัศน์ไปไกลๆ จะต้องใช้สถานีถ่ายทอดคลื่นเป็นระยะๆ เพื่อรับคลื่นโทรทัศน์จากสถานีส่งซึ่งมาในแนวเส้นตรง แล้วขยายให้สัญญาณแรงขึ้นก่อนที่จะส่งไปยังสถานีที่อยู่ถัดไป เพราะสัญญาณเดินทางเป็นเส้นตรง ดังนั้นสัญญาณจะไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตร บนผิวโลกเท่านั้น ทั้งนี้เพราะผิวโลกโค้ง หรืออาจใช้คลื่นไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียมซึ่งโคจรอยู่ในวงโคจรที่ตำแหน่งหยุดนิ่งเมื่อเทียบกับตำแหน่งหนึ่งๆ บนผิวโลก นั่นคือดาวเทียมมีความเร็วเชิงมุมเดียวกับความเร็วในการหมุนรอบตัวเองของโลก จากนั้นดาวเดทียมจะส่งคลื่นต่อไปยังสถานีรับที่อยู่ไกลๆได้
ความหมาย
คลื่นโทรทัศน์หมายถึงการส่งสัญญาณถ่ายทอดภาพและเสียงพร้อมกันจากที่หนึ่งไปอีกที่หนึ่ง
ประโยชน์
ให้ข่าวสารเเละรับข้อมูล
กระจายข่าวสาร
รังสีอัลตราไวโอเล็ต
รังสีอัลตราไวโอเลต (Ultraviolet Radiation:UV) หรือรังสีเหนือม่วง
เป็นรังสีคลื่นแม่เหล็กไฟฟ้าที่เกิดจากการแผ่ของดวงอาทิตย์ ซึ่งมีความยาวคลื่นอยู่ในช่วง 100–400 nm ความถี่ 1015-1217 Hz ซึ่งตาของมนุษย์ไม่สามารถมองเห็นได้ มีคุณสมบัติไม่แตกตัว (non-ionizing)
รังสีอัลตราไวโอเลตเป็นช่วงรังสีที่อยู่ระหว่างชนิดรังสีที่แตกตัวได้ และแตกตัวไม่ได้ ประกอบด้วย 3 ชนิดความยาวคลื่น
– UVA หรือเรียกชื่ออื่นว่า Long wave UVR หรือ Black light ความยาวคลื่น 315 – 400 nm มีระดับพลังงาน 3.10-3.94 eV
– UVB หรือเรียกชื่ออื่นว่า Middle UVR หรือ Sunburn radiation ความยาวคลื่น 280 – 315 nm มีระดับพลังงาน 3.94-4.43 eV
– UVC หรือเรียกชื่ออื่นว่า Short wave UVR หรือ Germicidal radiation ความยาวคลื่น 100 – 280 nm มีระดับพลังงาน 4.43-12.4 eV
สมบัติ
1.เป็นตัวการที่ทำให้เกิดประจุอิสระและไอออนในชั้นบรรยากาศไอโอโนสเฟียร์
2.ไม่สามารถเคลื่อนที่ทะลุผ่านสิ่งกีดขวางหนา ๆ ได้
3.ทะลุผ่านแก้วได้บ้างเล็กน้อย
4.ใช้ประโยชน์ในวงการแพทย์ เช่น รักษาโรคผิวหนัง
เลเซอร์
เป็นลำแสงสีเดียว (โดยมีค่าความยาวแบบเป็นคลื่นเดียว)
มีเฟสเดียวกัน (มีหน้าคลื่น)
มีทิศทางในแบบแน่นอน (เป็นแบบลำแสง)
ระดับของแสงมีความเข้มสูง (จำนวนของโฟตอนต่อหนึ่งหน่วยพื้นที่สูง)
ประโยชน์
ใช้ในการพิสูจน์เอกสาร ตรวจสอบลายเซ็น
ช่วยร่างกายสังเคราะห์วิตามินดี
ใช้ตรวจสอบคุณภาพอาหารว่าเสียหรือไม่
ใช้ตรวจสอบสารเคมี
รังสีอินฟาเรด
ช่วงของรังสีอินฟราเรด
รังสีอินฟราเรดย่านใกล้ มีความยาวคลื่นในช่วง 0.75 – 3 μm สามารถให้ใช้งานในช่วง 500 – 2,200 ºC ให้กำลังความร้อนต่อพื้นที่สูง สามารถให้ความร้อนได้สูง ความร้อนผ่านเข้าในเนื้อวัสดุได้ลึก และรวดเร็ว นิยมนำไปใช้ในอุตสาหกรรมอาหาร เช่น การอบแห้งผลิตภัณฑ์
รังสีอินฟราเรดย่านกลาง มีความยาวคลื่นในช่วง 3 – 25 μm สามารถให้อุณหภูมิใช้งานในช่วง 500 – 950 ºC สามารถให้ความร้อนได้ปานกลาง และผ่านเข้าไปในเนื้อวัสดุได้ลึกปานกลาง
รังสีอินฟราเรดย่านไกล มีความยาวคลื่นในช่วง 25 – 100 μm สามารถให้ใช้งานในช่วง 300 – 700 ºC ให้ความร้อนต่อหน่วยพื้นที่ได้ต่ำ ความร้อนผ่านเข้าไปในเนื้อวัสดุได้ไม่ลึก เหมาะสำหรับใช้งานประเภทที่ต้องการความร้อนต่ำ และจำกัดบริเวณพื้นผิว
รังสีอินฟราเรด
มีความยาวคลื่นอยู่ในช่วง 0.75-100 μm หรือในช่วงความถี่ 1,011 – 1,014 เฮิร์ตซ์ (Hz) หรืออยู่ในช่วงระหว่างแสงสีแดงกับคลื่นวิทยุ เช่นเดียวกันกับคลื่นไมโครเวฟ โดยคุณสมบัติเด่นเฉพาะตัวของรังสีอินฟราเรด คือ ไม่เบี่ยงเบนในสนามแม่เหล็กไฟฟ้า และหากมีความถี่สูงขึ้น พลังงานก็จะเพิ่มสูงขึ้นด้วย
รังสี เอกซ์
รังสีเอกซ์ (x-ray)
เป็นรังสีแม่เหล็กไฟฟ้าที่มีคุณสมบัติเป็นทั้งคลื่น และอนุภาค เช่นเดียวกับรังสีแกมมา แต่มีช่วงความยาวคลื่นต่ำกว่ารังสีแกมมา คือ ประมาณ 0.1 – 100 อังสตอม (Å) หรือ 0.01 – 10 นาโนเมตร (nm) แบ่งออกเป็น 2 ช่วง คือ รังสีเอกซ์ที่มีความยาวคลื่นสั้นกว่า 1 อังสตอม (Å) และรังสีเอกซ์ที่มีความยาวคลื่นมากกว่า 1 อังสตอม (Å)
คุณสมบัติรังสีเอกซ์
เป็นรังสีประเภทคลื่นแม่เหล็กไฟฟ้า เช่นเดียวกับรังสีแกมมา แต่มีช่วงความยาวคลื่นต่ำกว่า คือ ประมาณ 0.01 – 100 Å (อังสตรอม)
มีคุณสมบัติเหมือนกับแสงสว่างธรรมดา มีความเร็วการเดินทางในสุญญากาศเท่ากับความเร็วแสง คือ 3.8×108 m/s นอกจากนี้ ยังมีคุณสมบัติการสะท้อน การหักเห และเบี่ยงเบน เหมือนกับแสงสว่างธรรมดา
เคลื่อนที่เป็นเส้นตรง และไม่ถูกทำให้เบี่ยงเบนโดยสนามแม่เหล็ก และไฟฟ้า
ทำให้วัตถุบางอย่างเรืองแสงได้ ซึ่งวัตถุจะต้องมีสารบางอย่างที่ทำให้เรืองแสงได้
เป็นรังสีก่อไอออน เมื่อผ่านในตัวกลางที่เป็นอากาศหรือก๊าซ
ทำให้เกิดรอยดำบนแผ่นฟิล์มถ่ายรูปได้ เช่นเดียวกับแสงสว่าง
ทะลุทะลวงผ่านวัตถุต่าง ๆ ได้ดี สามารถทะลุผ่านเนื้อเยื่อมนุษย์ และสัตว์ พลาสติก เสื้อผ้า แต่ไม่สามารถผ่านโลหะตะกั่วหรือคอนกรีตหนาๆได้
ถูกดูดกลืนโดยวัตถุที่มีเลขเชิงมวลสูง
มีสมบัติเช่นเดียวกับแสง เช่น การสะท้อน (reflection) การหักเห (refraction) การเลี้ยวเบน (diffraction)
ทำให้เกิดการเปลี่ยนแปลงของสารชีวเคมีในสิ่งมีชีวิต เช่น เซลล์ของร่างกายถูกทำลาย หรือเกิดการกลายพันธุ์ (Mutation) ถ้าได้รับรังสีเป็นจำนวนมาก และเป็นเวลานาน
ประเภทรังสีเอกซ์
1. รังสีเอกซ์ที่มีสเปกตรัมแบบต่อเนื่อง
เป็นรังสีเอกซ์ที่ได้มาจากเครื่องกำเนิดรังสีเอกซ์โดยการเร่งให้อนุภาคมีประจุวิ่งเข้าชนเป้าโลหะ
2. รังสีเอกซ์ที่มีสเปกตรัมแบบเฉพาะตัว หรือรังสีเอกซ์เฉพาะตัว
เป็นรังสีเอกซ์ที่ได้มาจากการสลายตัวของธาตุกัมมันตรังสีซึ่งเป็นการกระตุ้นโดยอาศัยพลังงานจากภายในอะตอม โดยเกิดการเปลี่ยนชั้นวงโคจรของอิเล็กตรอนจากชั้นพลังงานสูงกว่ามายังชั้นพลังงานตำกว่า การ เปลี่ยนชั้นพลังงานนี้ จะปล่อยพลังงานส่วนเกินออกมาในรูปของรังสีเอกซ์เฉพาะตัว (Characteristic x-rays) นอกจากนั้นยังมีการเกิดรังสีเอกซ์ที่มีลักษณะของสเปกตรัมแบบเฉพาะตัวจากการกระตุ้น โดยอาศัยพลังงานจากภายนอกอะตอม ซึ่งสามารถเกิดรังสีเอกซ์ที่มีลักษณะของสเปกตรัมแบบเฉพาะตัว ตามชนิดของเป้าโลหะที่ใช้ลดความเร็วของอิเล็กตรอนในเครื่องกำเนิดรังสีเอกซ์
ประโยชน์
ทางด้านดาราศาสตร์
– ใช้เพื่อถ่ายภาพดาราจักรที่ตามนุษย์มองไม่เห็น
ทางด้านความมั่นคง และอากาศยาน
– ใช้ถ่ายภาพเพื่อค้นหาวัตถุอันตราย วัตถุระเบิด ซึ่งใช้มากในสนามบินสำหรับตรวจสัมภาระของผู้โดยสาร
ทางด้านอุตสาหกรรม– ใช้ตรวจหาความหนาแน่นของวัตถุหรือโลหะใช้ตรวจหารอยร้าวหรือรอยรั่วของชิ้นงาน
1.การเเพทย์
ใช้ถ่ายภาพสำหรับทางการแพทย์ อาทิ การเอกซ์เรย์ปอดเพื่อตรวจหามะเร็งปอด การเอกซ์เรย์กระดูก เพื่อตรวจการหลุด การแตกหักของกระดูก การเอกซ์เรย์ร่างกายเพื่อตรวจหาตำแหน่งวัตถุหรือโลหะ เป็นต้น
รังสีเเกมมา
รังสีเเกมมามี
สัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17 หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น
ประโยชน์ประโยชน์ของรังสีแกมมา
คลื่นแม่เหล็กไฟฟ้าที่มีอันตรายมากที่สุดคือ รังสีแกมมา เนื่องจากเป็นคลื่นที่มีพลังงานมากที่สุด จึงสามารถทะลุผ่านสิ่งต่างๆ ได้ดี แต่เราก็สามารถนำมาใช้ประโยชน์ในทางการแพทย์เพื่อรักษาโรคได้ เช่น การใช้รังสีแกมมาจากการสลายตัวของโคบอลต์-60 (Co-60) เพื่อรักษาโรคมะเร็ง การใช้รังสีแกมมาจากการสลายตัวของไอโอดีน-131 (I-131) เพื่อรักษาโรคคอพอก และยังใช้รังสีแกมมามาทำความสะอาดเครื่องมือแพทย์