Please enable JavaScript.
Coggle requires JavaScript to display documents.
Machine Learning (Optimization (条件最优化 (拉格朗日乘子), Gradient Descent, 牛顿法与拟牛顿法…
Machine Learning
-
Evaluation
-
-
-
AUC有一个独特的优势,就是不关注具体得分,只关注排序结果,这使得它特别适用于排序问题的效果评估,例如推荐排序的评估。AUC这个指标有两种解释方法,一种是传统的“曲线下面积”解释;另一种是关于排序能力的解释
-
-
-
因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Data
归一化(Normalization)
-
-
-
-
-
-
-
NN Normalization
-
Layer Normalization
-
Despite its simplicity, batch normalization requires running averages of the summed input statistics. In feed-forward networks with fixed depth, it is straightforward to store the statistics separately for each hidden layer. However, the summed inputs to the recurrent neurons in a recurrent neural network (RNN) often vary with the length of the sequence so applying batch normalization to RNNs appears to require different statistics for different time-steps.
under layer normalization, all the hidden units in a layer share the same normalization terms µ and σ, but different training cases have different normalization terms.
-
-