Introduction to Regression
Background
Focus: Causal effects(ceteris paribus effects)
Gold standard: Randomised Experiments
Probability model of a causal linear relationship
Project: mimic randomised experiment with regression applied to observational data
Conditional mean model
Model assumptions
Population regression funciton #
Dependent variable: Regressand
Explanatory variable: Regressor
Regression parameters:Intercept, Slope Coefficient
Error Distrubance
Simple regression function
Residual #
Regression parameter estimates #
Linear Regression model estimation
Method of moments, Max likelihood
Ordinary Least Squares
Model fit (evaluation)
Sum of squares decomposition
R^2
SER
Statistical properties of coefficient Estimators
Unbiased #
Minimum variance #
Consistent #
Normally distributed #
Testing hypotheses