Please enable JavaScript.
Coggle requires JavaScript to display documents.
ฮอร์โมนพืช (plant hormone) (ออกซิน (auxin) (การออกฤทธิ์เป็นฮอร์โมนของออกซิ…
ฮอร์โมนพืช (plant hormone)
ออกซิน (auxin)
การสังเคราะห์ออกซิน
ออกซินเป็นฮอร์โมนที่แพร่กระจายทั่วไปในพืช มีเข้มข้นสูงที่เนื้อเยื่อเจริญ ตำแหน่งที่มีการสังเคราะห์ออกซิน ได้แก่เนื้อเยื่อเจริญบริเวณปลายยอดและปลายราก ใบอ่อนเป็นต้น
สารตั้งต้นของการสังเคราะห์ออกซินในพืช คือกรดอะมิโนทริปโตแฟน (Trytophan) ออกซินที่พืชสร้างขึ้นมีสองแบบคือแบบอิสระ สามารถเคลื่อนที่ได้ดี กับอีกแบบหนึ่งเป็นแบบที่จับอยู่กับสารอื่นๆ ทำให้เคลื่อนที่ได้น้อยหรือไม่ออกฤทธิ์
การออกฤทธิ์เป็นฮอร์โมนของออกซิน
การชักนำการยืดขยายเซลล์ลำต้น และเนื้อเยื่อหุ้มยอดแรกเกิด ถ้าออกซินสูงเกินไปจะยับยั้งการเติบโตเพราะออกซินที่สูงเกินจะกระตุ้นให้พืชสร้างเอทิลีนออกมา และไปกดการยืดขยายตัวของเซลล์
กระตุ้นการแบ่งเซลล์และการยืดขยายตัวของเซลล์ เกิดจากการเพิ่มความยืดหยุ่นที่ผนังเซลล์ เพิ่มความดันออสโมติกและลดความกดดันที่ผนังเซลล์ ทำให้เซลล์ขยายขนาดได้ง่าย และอาจจะส่งเสริมการสังเคราะห์โปรตีนที่จำเป็นต่อการเติบโต
การเพิ่มความยืดหยุ่นของผนังเซลล์ โดยเฉพาะในต้นอ่อนและเนื้อเยื่อหุ้มยอดแรกเกิด การเพิ่มความยืดหยุ่นของผนังเซลล์จะช่วยให้เซลล์ยืดขยายตัวได้
ชนิดของออกซิน
ออกซินสังเคราะห์
ออกซินธรรมชาติ
การนำไปใช้
.ใช้เร่งการเกิดของรากของกิ่งตอนหรือกิ่งปักชำ
ใช้กำจัดวัชพืช
ใช้กระตุ้นให้พืชบ้างชนิดติดผลโดยไม่ต้องมีการปฏิสนธิ
ไซโทไคนิน
การสังเคราะห์ในสิ่งมีชีวิต
ไซโตไคนินอาจจะสังเคราะห์มาจาก tRNA ในพืชและแบคทีเรีย[6][7] tRNAs ที่มี anticodon ที่เริ่มด้วย uridine และเป็นตัวพาอะดินีนที่เติมหมู่พรีนิลแล้วจะถูกสลายเพื่อนำอะดินีนไปสร้างเป็นไซโตไคนิน[6] การเติมหมู่พรีนิลของอะดินีนเกิดขึ้นโดยเอนไซม์ tRNA-isopentenyltransferase.[7] ออกซินมีบทบาทในการควบคุมการสังเคราะห์ไซโตไคนิน[8]
แบคทีเรียบางชนิดผลิตไซโตไคนินได้ เช่น Rhodospirillum robrom ซึ่งเป็นแบคทีเรียสีม่วง สร้างสารคล้ายไซโตไคนิน 4-hydroxyphenethyl ได้ [9] และ Paenibacillus polymyxa ซึ่งเป็นแบคทีเรียที่พบในไรโซสเฟียร์ของพืช สร้างไซโตไคนินชนิด iP ได้
ไซโตไคนินบางชนิดมีผลต่อจุลินทรีย์ด้วย เช่น ไคนีติน กระตุ้นการเจริญ การสร้างรงควัตถุและการตรึงไนโตรเจนของ Anabaena doliolum เร่งการเจริญเติบโตและการแบ่งเซลล์ในยีสต์ และราบางชนิดในสกุล Aspergillus และ Penicillium ใช้ไซโตไคนินเป็นแหล่งไนโตรเจ
การออกฤทธิ์ทางสรีรวิทยา
การเกิดปม ปมที่เกิดในพืชเป็นเนื้อเยื่อที่ไม่มีการกำหนดพัฒนาและมีลักษณะคล้ายเนื้องอก เกิดจากเชื้อ Agrobacterium tumefaciens
การชะลอการชรา ความชราของพืชเกิดจากกระบวนการแก่ตัวของเซลล์ มีการสูญเสียคลอโรฟิลล์ RNA โปรตีน และไขมัน การชะลอความชราของออกซินเกิดขึ้นโดยการป้องกันการสลายตัวของโปรตีน กระตุ้นการสังเคราะห์โปรตีน และขนส่งธาตุอาหารมายังเนื้อเยื่อ [2] ไซโตไคนินสนับสนุนการเกิดคลอโรฟิลล์และการเปลี่ยนอีทิโอพลาสต์ไปเป็นคลอโรพลาสต์
สนับสนุนการขยายตัวของเซลล์ ที่เกี่ยวข้องกับการดูดน้ำเข้าไปภายในเซลล์ เพราะไม่ทำให้น้ำหนักแห้งเพิ่มขึ้น
ทำลายระยะพักตัวของพืช ของเมล็ดพืชหลายชนิดได้ เช่น ผักกาดหอม
การใช้ประโยชน์
ทางการค้าใช้เพิ่มผลผลิตของพืชเศรษฐกิจ ผลผลิตของฝ้ายเพิ่มขึ้น 5-10% เมื่อแช่ในไซโตไคนินตั้งแต่ยังเป็นเมล็ด
นำมาใช้เพื่อช่วยเร่งการแตกตาข้างของพืช ควบคุมทรงพุ่มของไม้ดอกไม้ประดับ
นำมาใช้เพื่อกระตุ้นการสร้างยอดในการพาะเลี้ยงเนื้อเยื่อพืช
จิบเบอเรลลิน
การออกฤทธิ์ของจิบเบอเรลลิน
บเบอเรลลินมีผลต่อพัฒนาการของดอกโดยเฉพาะพัฒนาการของก้านชูเกสรตัวผู้และกลีบดอก บริเวณที่มีการสร้างจิบเบอเรลลินมากในดอกคือผนังของอับละอองเรณูและในละอองเรณู การสร้างจิบเบอเรลลินในอับละอองเรณูนี้จะควบคุมพัฒนาการของดอกทั้งหมด
ควบคุมให้พืชอยู่ในสภาวะอ่อนวัย เช่นการทำให้ใบของ Hedera helix คงอยู่ในสภาพของใบในระยะอ่อนวัยซึ่งมีความสวยงามกว่าใบในระยะเต็มวัยพร้อมสืบพันธุ์ได้
กระตุ้นการขยายตัวของเซลล์ โดยการเพิ่มความยืดหยุ่นของผนังเซลล์ ทำให้เซลล์มีรูปร่างยืดยาวขึ้น
dระตุ้นการติดผล ในพืชหลายชนิด เช่น ส้ม มะเขือเทศ องุ่น การได้รับจิบเบอเรลลินช่วยให้เกิดการติดผลโดยไม่ต้องผสมเกสรได้
หลังการงอก จิบเบอเรลลินสนับสนุนการยืดตัวของข้อและการแผ่ขยายของใบ
การนำไปใช้
นำไปใช้ช่วยให้ช่อองุ่นยาวทำให้ได้ผลขนาดใหญ่ขึ้น
คุณลักษณะทางเคมีและการสังเคราะห์
จิบเบอเรลลินทั้งหมดมีโครงสร้างหลักเป็น ent-gibberellane ที่สังเคราะห์มาจาก ent-kaurene
การสังเคราะห์จิบเบอเรลลินในพืชชั้นสูงเริ่มจากสร้าง Geranylgeranyl diphosphate (GGDP) ซึ่งเป็นสารตั้งต้นของสารกลุ่มดีเทอร์พีนอยด์โดยทั่วไป จากนั้นจึงเปลี่ยน GGDP ไปเป็น ent-kaurene แล้วจึงเปลี่ยนเป็น GA12 แล้วจึงเปลี่ยนต่อไปเป็นจิบเบอเรลลินตัวอื่นๆ
จิบเบอเรลลินเป็นสารกลุ่มไดเทอร์พีนอยด์ที่สังเคราะห์โดยวิถีเทอร์พีนอยด์ในพลาสติดแล้วจึงเปลี่ยนรูปในเอนโดพลาสมิก เรกติคิวลัมและไซโตซอลจนได้รูปที่ออกฤทธิ์ในสิ่งมีชีวิตได้
เอทิลีน
การสังเคราะห์เอทิลีน
กิดขึ้นได้ในส่วนต่างๆของพืชทั้งราก ลำต้น ใบ ผล เมล็ด และส่วนหัว แต่อัตราการสังเคราะห์จะขึ้นกับระยะเวลาในการเติบโต โดยเนื้อเยื่อที่แก่จะสังเคราะห์เอทิลีนมาก เช่น ผลไม้ที่กำลังสุก ในใบ ใบอ่อนจะผลิตเอทิลีนน้อยและจะเพิ่มขึ้นเมื่อใบแก่ขึ้นและจะมากที่สุดเมื่อใบใกล้ร่วง เมื่อผลไม้เริ่มสังเคราะห์เอทิลีน ปริมาณเอทิลีนที่ผลิตอยู่ในระดับ 0.1 -1 ไมโครลิตร ซึ่งสามารถกระตุ้นให้ผลไม้เพิ่มอัตราการหายใจได้ เนื้อเยื่อที่ยังไม่แก่แต่เกิดบาดแผลหรือถูกรบกวนจะปล่อยเอทิลีนออกมาได้ภายในครึ่งชั่วโมง การถูกรบกวนโดยการกรีด (ในกรณีของต้นยาง) การติดเชื้อจุลินทรีย์ น้ำท่วม อากาศเย็นจัด ล้วนแต่กระตุ้นการผลิตเอทิลีนได้ทั้งสิ้น[3]การผลิตเอทิลีนเกิดขึ้นได้ทุกส่วนในพืชชั้นสูง ทั้งที่ใบ ราก ลำต้น ดอก ผล และต้นกล้า
การนำไปใช้
ใช้ทำให้ผลไม้สุกพร้อมกัน
การออกฤทธิ์ทางสรีรวิทยา
ผลต่อการเจริญของกิ่งและใบ เอทิลีนกดการเจริญของกิ่งและใบ โดยเฉพาะบริเวณปล้อง เอทิลีนมีส่วนในการกระตุ้นการเกิดของใบ แต่เมื่อเกิดใบขึ้นแล้วจะยับยั้งการแผ่ขยายของใบ
ชักนำให้เกิดขนรากมากขึ้นด้วย
การยืดขยายความยาวของลำต้น เอทิลีนยับยั้งการยืดยาวของลำต้น ทำให้อ้วนหนาขึ้น พบมากในพืชใบเลี้ยงคู่ ส่วนยอดของลำต้นจะโค้งงอเป็นตะขอ
เร่งให้เกิดการสุกในแอปเปิล กล้วย มะม่วง แคนตาลูบและมะเขือเทศ โดยจะเพิ่มการผลิตเอทิลีนในระยะที่แก่เต็มที่แต่ยังเป็นสีเขียวอยู่ การเพิ่มขึ้นของเอทิลีนทำให้มีอัตราการหายใจเพิ่มขึ้น คลอโรฟิลล์สลายตัว การสร้างสารสี รส และกลิ่น การอ่อนตัวลงของเนื้อเยื่อ และเตรียมพร้อมสำหรับการหลุดร่วง
การตอบสนองต่อภาวะน้ำท่วมขัง พืชที่ถูกน้ำท่วมจะสังเคราะห์เอทิลีนได้มาก ทำให้พืชเกิดการเปลี่ยนแปลงคือ ใบเหลือง เหี่ยว หุบลู่ลง แล้วหลุดร่วง
กรดแอบไซซิก
การนำไปใช้
นำไปใช้เพื่อช่วยชะลอการเหี่ยวเฉาของพืชและดอกไม้
การออกฤทธิ์ทางสรีรวิทยา
การพักตัวของพืช กรดแอบไซซิกเป็นฮอร์โมนสำคัญที่ทำให้ตาพืชเข้าสู่ระยะพักตัว
ชักนำการหลุดร่วงและการเสื่อมชรา ผลต่อการหลุดร่วงของกรดแอบไซซิกเป็นผลโดยอ้อม คือไปกระตุ้นให้เซลล์พืชที่แก่สร้างเอทิลีนมากขึ้น
ผลต่อการงอกของเมล็ด กรดแอบไซซิกมีผลยับยั้งการงอกของเมล็ด ทำให้มีการพักตัวของเอ็มบริโอ จนกว่าเมล็ดเริ่มงอก เอ็มบริโอจึงเริ่มเจริญอีกครั้งหนึ่ง
การควบคุมการสังเคราะห์โปรตีน กรดแอบไซซิกมีผลทำให้การสังเคราะห์โปรตีนที่เกี่ยวข้องกับการเจริญเติบโตน้อยลง
ปากใบที่ได้รับกรดแอบไซซิกจะปิดไม่ว่าจะอยู่ในที่มืดหรือสว่าง