Logistic Regression

Type of Plot:
Scatterplot

Simple Logistic Regression:
qplot(x = explanatory,
y = response,
data = dataframe,
geom = "point")

Multiple Logistic Regression plots are in dimensions 3

\( Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_{k-1} X_{k-1} + \varepsilon \)


\( k = 2 \) in Simple Logistic Regression

Parameters: \( \beta_i \) for \( i \in { 0, \ldots, k - 1 }\)
Point Estimates: \( B_i \) for \( i \in { 0, \ldots, k - 1}\)

Hypothesis Test

Hypotheses:
\( H_0: \beta_i = 0 \)
1) \( H_a: \beta_i < 0 \)
2) \( H_a: \beta_i \ne 0 \)
3) \( H_a: \beta_i > 0 \)

Test Statistic Random Variable (Assuming \(H_0\) is true):
\( Z = \dfrac{B_i - 0}{SE_i} \) where \( SE_i \) is defined here

Observed Test Statistic:
\( z_{obs} = \dfrac{b_{i, obs} - 0}{{SE}_{i, obs}}\) where \( {SE}_{i, obs} \) is defined here

\( \mathbf{\textit{P}}\)-value:
1) \( \mathbb{P}(B_i \le b_{i, obs}) = \mathbb{P}(Z \le z_{obs}) \)
2) \( \mathbb{P}\left(\big| B_i \big| \ge \big| b_{i, obs} \big| \right) = \mathbb{P}\left(\big| Z \big| \ge \big| z_{obs} \big|\right) \)
3) \( \mathbb{P}(B_i \ge b_{i, obs}) = \mathbb{P}(Z \ge z_{obs}) \)

Conditions for Distributional Approximation (To \( Z\)):

  1. Linear relationship between linked response and predictors
  2. Independent observations, errors, and predictor variables

Confidence Interval

Formula for CI:
\( b_i \pm t_{obs}^* \cdot SE_{obs} \) where \( SE_{obs} \) is defined here

Conditions for Distributional Approximation (To \( Z \)):

  1. Linear relationship between linked response and predictors
  2. Independent observations and predictor variables