One Mean

Parameter: μ
Point Estimate: ˉX

Hypothesis Test

Hypotheses:
\( H_0: \mu = \mu_0 \)
1) \( H_a: \mu < \mu_0 \)
2) \( H_a: \mu \ne \mu_0 \)
3) \( H_a: \mu > \mu_0 \)

Test Statistic Random Variable (Assuming \(H_0\) is true):
\( T =\dfrac{ \bar{X} - \mu_0}{ S / \sqrt{n} } \sim t (df = n - 1) \)

Observed Test Statistic:
\( t_{obs} = \dfrac{\bar{x}_{obs} - \mu_0}{s_{obs} \, / \, \sqrt{n}} \)

\( \mathbf{\textit{P}}\)-value:
1) \( \mathbb{P}(\bar{X} \le \bar{x}_{obs}) = \mathbb{P}(T \le t_{obs}) \)
2) \( 2 \cdot \mathbb{P}(\bar{X} \ge \bar{x}_{obs}) = \mathbb{P}\left(\big| T \big| \ge \big| t_{obs} \big| \right) \)
3) \( \mathbb{P}(\bar{X} \ge \bar{x}_{obs}) = \mathbb{P}(T \ge t_{obs}) \)

Confidence Interval

Formula for CI:
\( \bar{x}_{obs} \pm t^*_{df} \cdot \dfrac{s_{obs}}{\sqrt{n} } \)

Conditions for Distributional Approximation (To \( T\)):

  1. Independent Observations
  2. Nearly normal population
    OR
    large sample size ( \( n \ge 30 \) )

Conditions for Distributional Approximation (To \( T\)):

  1. Independent Observations
  2. Nearly normal population
    OR
    large sample size ( \( n \ge 30 \) )

Type of Plot:
Histogram

qplot(x = response, data = dataframe, geom = "histogram", color = I("white") )