One Proportion

Parameter: P
Point Estimate: ˆP

Hypothesis Test

Confidence Interval

Hypotheses:
\( H_0: P = p_0 \)
1) \( H_a: P < p_0 \)
2) \( H_a: P \ne p_0 \)
3) \( H_a: P > p_0 \)

Type of Plot:
Bar Graph

Test Statistic Random Variable (Assuming \(H_0\) is true):
\( Z =\dfrac{ \hat{P} - p_0}{\sqrt{\dfrac{p_0(1 - p_0)}{n} }} \sim N(0, 1) \)

Observed Test Statistic:
\( z_{obs} = \dfrac{\hat{p}_{obs} - p_0}{\sqrt{\dfrac{p_0(1 - p_0)}{n} }} \)

\( \mathbf{\textit{P}}\)-value:
1) \( \mathbb{P}(\hat{P} \le \hat{p}_{obs}) = \mathbb{P}(Z \le z_{obs}) \)
2) \( 2 \cdot \mathbb{P}(\hat{P} \ge \hat{p}_{obs}) = \mathbb{P}(\big| Z \big| \ge \big| z_{obs} \big|) \)
3) \( \mathbb{P}(\hat{P} \ge \hat{p}_{obs}) = \mathbb{P}(Z \ge z_{obs}) \)

Conditions for Distributional Approximation (To \( Z\)) (Assuming \( H_0 \) is true):

  1. Independent Observations
  2. Number of expected successes and expected failures is at least 10 \( \left[ n p_0 \ge 10 \text{ and } n (1 - p_0) \ge 10 \right] \)

Formula for CI:
\( \hat{p}_{obs} \pm z^* \sqrt{ \dfrac{\hat{p}_{obs}(1 - \hat{p}_{obs})}{n} }\)

Conditions for Distributional Approximation (To \( Z\)):

  1. Independent Observations
  2. Number of observed successes and observed failures is at least 10 \( \left[ n \hat{p}_{obs} \ge 10 \text{ and } n (1 - \hat{p}_{obs}) \ge 10 \right] \)

qplot(x = response, data = dataframe, geom = "bar")