Goodness of Fit

Type of Plot:
Bar Graph

Parameters: P1,P2,,Pk
Point Estimates: ˆP1,ˆP2,,ˆPk

Confidence Interval
does not apply

Hypothesis Test

Hypotheses:
\( H_0: P_1 = p_{1, 0}, P_2 = p_{2, 0}, \ldots, P_k = p_{k, 0} \)
\( H_a: \) At least one \( P_i \ne p_{i, 0} \) for \( i \in { 1, \ldots, k }\)

Test Statistic Random Variable (Assuming \(H_0\) is true):
\( X^2 = \sum_{\text{all cells}} \dfrac{\text{(observed - expected)}^2}{\text{expected}} \sim \chi^2 (df = k - 1) \)

Observed Test Statistic:
\( {x_{obs}}^2 = \sum_i \dfrac{(n_{obs, i} - n_{exp, i})^2}{n_{exp, i}} \)

\( \mathbf{\textit{P}}\)-value:
\( \mathbb{P}(X^2 \ge {x_{obs}}^2) \)

Conditions for Distributional Approximation (To \( \chi^2\)) (Assuming \( H_0 \) is true):

  1. Independent Observations
  2. All expected cell counts \( \ge 5 \)
  3. Degrees of freedom \( \ge 2 \)

qplot(x = response, data = dataframe, geom = "bar")